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Abstract
The thermopower of two-dimensional parabolic quantum wires and quantum
contacts in magnetic field is investigated. We obtain a convenient analytic
formula for the thermopower of these structures. The temperature dependence
of the thermopower is studied and the influence of the magnetic field on the
thermopower is examined. Oscillations in the thermopower are investigated.

1. Introduction

The purpose of the present work is to analyse thermoelectric transport in two-dimensional (2D)
quantum channels and contacts placed in a magnetic field. Investigation of the thermoelectric
properties of nanodevices is of utmost importance for providing fundamental information
about electron properties which is not available from ballistic transport measurements alone.
In connection with this, studies of the thermopower in quantum channels and quantum point
contacts have received considerable attention in recent years. In particular, the thermopower
of a quantum point contact was theoretically investigated in [1–3]. Measurements of the
thermopower in quantum contacts were recently made in [4–6]. It was shown that experimental
results are in good agreement with theoretical ones obtained using equation (1) (below).
Indirect confirmation of equation (1) for a 2D quantum channel was made in [7]. A general
formalism for thermoelectric transport in the case of microstructures with any number of
terminals was developed in [8].

We consider a system which consists of two bulk reservoirs connected by a 2D channel
or quantum contact. A bias voltage is applied between the reservoirs, which are kept at
different temperatures. In this case the relationship between the thermopower and the ballistic
conductance G is given in the linear-response approximation by the Cutler–Mott formula [9]
which for ballistic transport has the form [10, 11]

S = −π2k2
B T

3e

∂ ln G

∂µ
(1)

where µ is the chemical potential.
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It is well known that the conductance of the two-dimensional quantum channels and point
contacts is a step-like function of the chemical potential. The steps in the conductance between
the quantized value lead to peaks in the thermopower. As a rule, this phenomenon has been
investigated using numerical methods. Equation (1) is inconvenient for the analysis because
it contains a logarithm of a series. In view of this, it is quite important to obtain convenient
formulae for analytic and numerical investigations of the thermopower. In this work we derive
analytic expressions for the thermopower of quantum channels and quantum point contacts
in a perpendicular magnetic field using an expansion the thermopower into a Fourier series
and extracting the monotonic and oscillating parts of S. This allows us obtain convenient
formulae for analytic investigation of the thermopower. We show that the thermopower has
an oscillatory dependence on the magnetic field and the chemical potential. Periods of the
oscillations are found and the temperature dependence is investigated in detail.

2. Conductance of a 2D quantum channel

We model the confinement of the quantum channel with the help of a parabolic potential. This
potential is widely used for studying the physical properties of quantum channels [12, 13].
The spectrum of electrons in a 2D quantum channel in a perpendicular magnetic field is [12]

εnp = h̄ω

(
n +

1

2

)
+

p2

2m∗ , (2)

where ω =
√

ω2
0 + ω2

c , ω0 is the characteristic frequency of the parabolic potential, ωc is the
cyclotron frequency, p is the momentum in the direction of the channel axis, m∗ is the effective
electron mass and n = 0, 1, 2, . . ..

In order to calculate the thermopower (1) it is necessary, first of all, to obtain a convenient
formula for the conductance of the quantum channel. Using the Landauer–Büttiker formalism
for ballistic transport [14, 15] we can write the following equation for the conductance of the
2D quantum channel

G

G0
=

∫ ∞

0
G(ε, 0)

∂ f

∂µ
dε, (3)

where G0 is the conductance quantum, f is the Fermi function and G(ε, 0) is the conductance
of the quantum channel (in units of G0) at the temperature T = 0. Note that at T = 0 the
conductance (in units of G0) is equal to the number of states ν(ε) with an energy less than or
equal to ε. Then we can express the number of states ν(ε) in terms of the classical partition
function Z [16]

ν(ε) = 1

2π i

∫ α+i∞

α−i∞
Z(ξ)eεξ dξ

ξ
. (4)

Here α > 0, ξ = 1/T , and the function Z has the form

Z−1 = 2 sinh

(
h̄ω

2T

)
. (5)

It follows that ν(ε) is determined by the simple poles ξ = 2πni/h̄ω of the integrand in
equation (4), lying on the imaginary axis, and by a double pole at zero. Closing the contour in
the left half-plane we reduce the considered integral to the sum of the residues in the poles

G(ε, 0) = ν(ε) = ε

h̄ω
+

1

π

∞∑
n=1

(−1)n sin(2πnε/h̄ω)

n
. (6)
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Substituting equation (6) into equation (3) and using a formula that is similar to equation (4) [17]

1

1 + exp(x)
= 1

2i

∫ α+i∞

α−i∞
exp(−qx) dq

sin(πq)
, (7)

we obtain the formula for the conductance at T �= 0 extracting the monotonic Gmon and
oscillating Gosc parts

G = Gmon + Gosc. (8)

Here
Gmon

G0
= µ

h̄ω
(9)

and

Gosc

G0
= 2πT

h̄ω

∞∑
n=1

(−1)n sin(2πnµ/h̄ω)

sinh(2π2nT/h̄ω)
. (10)

Note that we have obtained equation (8) integrating in (3) with respect to ε and then with
respect to q reducing the last integral to the sum of residues in the simple poles q = −n, and
±i2πnT/h̄ω.

It follows from equation (8) that the height of the conductance steps is equal to the
conductance quantum G0. The width of a conductance plateau is h̄ω. As one can see, the
monotonic part of the conductance is a linear function of the chemical potential. The Fourier
series in equation (10) gives the oscillating part of the conductance. It is clear that the Fourier
series depends on the fractional part of the expression µ/ε. Therefore, the oscillating part of
the conductance as a function of µ has the period h̄ω. The conductance steps are stipulated
by the sum of a linear monotonic function and a saw-tooth oscillator function. Note that at
T �= 0 the contribution of higher harmonics in Gosc is suppressed by factors sinh(2π2nT/h̄ω).
This leads to a substantial smearing of the saw-tooth oscillations on the plot Gosc and, in its
turn, to a substantial smearing of steps of the conductance quantization and to an inclination of
plateaus on the plot of G(µ) even at relatively low temperature. Using equations (9) and (10),
it is possible to estimate the ratio of the monotonic part of the conductance to the oscillating
one:

Gosc

Gmon
� h̄ω

µ
. (11)

This circumstance allows us to simplify formula (1) for the thermopower.

3. Thermopower of a 2D quantum channel

Taking into account the estimation Gosc/Gmon � 1 we can rewrite the initial formula (1) for
the thermopower in the form

S = k2
Bπ2T

3e

1

Gmon

(
∂Gmon

∂µ
+

∂Gosc

∂µ

)
+ O

(
h̄ω

µ

)
. (12)

We stress that formula (12) is more convenient for studying the thermopower than the starting
expression (1). Equation (12) lets us study the oscillation and temperature dependence of the
thermopower in detail.

Calculating the partial derivatives in (12), we get S in the form

S = Smon + Sosc. (13)
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µ/ ω−1/2

Figure 1. Oscillations of thermopower as a function of the chemical potential: T = 4 K, B = 1.2 T,
ω0 = 5.1 × 1012 s−1.

Here

Smon = k2
Bπ2

3e

T

µ
(14)

and

Sosc = k2
Bπ2

3e

2π2T 2

µh̄ω

∞∑
n=1

(−1)n n cos(2πnµ/h̄ω)

sinh(2π2nT/h̄ω)
. (15)

Thus, the expression for the thermopower splits into two terms: monotonic and oscillating.
The first of them has an inverse dependence and the second an oscillatory dependence on
the chemical potential with a period h̄ω. The onset of each oscillation in the thermopower
is due to the opening of a new channel for conduction. Hence, positions of resonance peaks
correspond to thresholds of conductance quantization, namely the peaks arise at the points in
which µ/h̄ω − 1/2 is the integer. Note that the peak value varies with 1/µ (figure 1).

Let us consider the temperature dependence of the thermopower. It follows from figure 2
that the behaviour of the thermopower as a function of the temperature depends strongly on the
magnetic field. It is interesting to analyse the temperature dependence of the peak value of the
thermopower. This was obtained by Streda [11] for the case of a 2D quantum channel in the
absence of a magnetic field that the peak value of the thermopower is temperature independent
at very low temperatures and acquires the value

Smax = kB

e

ln 2

i + 1/2
� − 60

i + 1/2
, (16)

where i is the number of the occupied subbands. Note that equation (16) holds true for our
case, too.

However, the peak value of the thermopower is linearly temperature dependent at higher
temperatures (figure 3). Note that in contrast to the conductance quantization the temperature
has a weak influence on the thermopower. This circumstance gives more favourable
experimental conditions for studying the quantum channels.

The dependence of the thermopower on the magnetic filed is conditioned by the
relationship between magnetic and size quantization. In the case of strong size quantization
(ω0 � ωc) the thermopower is a monotonic function of B (figure 4). In the opposite case
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Figure 2. Thermopower as a function of the temperature: µ = 1.2×10−13 erg, ω = 3.4×1012 s−1.
(1) B = 1.497 T, (2) B = 1.61 T, (3) B = 2.1 T.

Figure 3. Thermopower as a function of the temperature: µ = 1.1×10−13 erg, µ/h̄ω−1/2 = 94.

(ω0 � ωc) the thermopower undergoes Shubnikov–de Haas oscillations (figure 5) with the
period

�
1

B
= eh̄

m∗cµ
. (17)

Note that the amplitude of the oscillation peaks is a linear function of magnetic field (figure 5).
The width of the channel has an important effect on the thermopower. In particular, the

period of oscillations of the thermopower h̄ω grows less with increasing effective width of
the channel, in proportion to l2

eff (leff = √
h̄/m∗ω). Note that the thermopower undergoes

oscillations as a function of the effective width of the channel (figure 6). The period of the
oscillations depends strongly on the relation between the size and magnetic quantization.

4. Thermopower of a 2D quantum point contact

In this section we shall consider the thermoelectric properties of a 2D quantum point contact
placed in a perpendicular magnetic field. In the saddle point model [18, 19], the geometric
confinement potential is expressed in the form

V (x, y) = V0 +
m∗ω2

y

2
y2 − m∗ω2

x

2
x2, (18)
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Figure 4. Thermopower as a function of the magnetic field: T = 2 K, µ = 4.2 × 10−13 erg,
ω0 = 5.3 × 1013 s−1 (strong size quantization case).

Figure 5. Thermopower as a function of the magnetic field: T = 4 K, µ = 1.235 × 10−13 erg,
ω0 = 1.1 × 1012 s−1 (strong magnetic quantization case).

Figure 6. Thermopower as a function of the effective length: T = 2 K, B = 10 T,
µ = 4 × 10−13 erg.

where V0 is the potential at the saddle point. In distinction from the case of the quantum
channel considered in the preceding section, the conductance of a quantum point contact is



Thermopower of 2D channels and quantum point contacts in a magnetic field 4187

given by the generalized Landauer–Büttiker formula

G(T = 0)

G0
=

∞∑
n=0

[1 + exp(−2πεn)]
−1. (19)

Here εn = (E − V0 − En)/h̄ω2, E is the total electron energy, En = h̄ω1(n + 1/2) is the
discrete component of the electron spectrum and ωx , ωy are the characteristic frequencies of
the saddle point potential [18]:

ω2
1 = 1

2

(
	2 +

√
4ω2

xω
2
y + 	4

)
, (20)

ω2
2 = 1

2

(
−	2 +

√
4ω2

xω
2
y + 	4

)
, (21)

where 	 =
√

ω2
c + ω2

y − ω2
x .

Note that equations (20), (21) were obtained in [18] using the method of Bogolubov
canonical transformations. However, it is easy to obtain these formulae using only simple
methods of linear algebra with the help of canonical transformation of the phase space from
analogy with [20].

A comparison between the terms in brackets in (19) and the Fermi distribution shows that
the value h̄ω2/2π plays the same role as the temperature in the Fermi distribution, i.e. it smears
the threshold electron energy.

Using equation (7), one can obtain a convenient formula for the conductance at zero
temperature:

G(ε, 0) = E − V0

h̄ω1
+

1

2

∞∑
k=1

(−1)k+1 exp[−2π(E − V0)k/h̄ω2]

sinh(πkω1/ω2)

+
ω2

ω1

∞∑
k=1

(−1)k sin[2π(E − V0)k/h̄ω1]

sinh(πkω2/ω1)
. (22)

In order to find the temperature dependence of the conductance we use the approach developed
in the preceding section. Taking into account the estimation µ � T , we obtain the formula
for the conductance at T �= 0 extracting the monotonic Gmon and oscillating Gosc parts

G = Gmon + Gosc. (23)

Here
Gmon

G0
= µ − V0

h̄ω1
(24)

and

Gosc

G0
= 2π2 T

h̄ω1

ω2

ω1

∞∑
k=1

(−1)k sin[2πk(µ − V0)/h̄ω1]

sinh(2π2kT/h̄ω1) sinh(πkω2/ω1)
. (25)

It follows from equation (25) that the oscillating component of the conductance Gosc has
maxima at the points where µ − V0 = h̄ω1(n + 1/2) that correspond to the thresholds of the
conductance steps. The monotonic part of the conductance is a linear function of the chemical
potential. It should be noted that the smoothing of the oscillation peaks in equation (25)
is determined by the product of two factors, sinh(2π2kT/h̄ω1) and sinh(πkω2/ω1), each
influencing the profile of the oscillation. As was pointed out in [17], an increase in the first
factor with temperature may be compensated by the smallness of the second factor to such an
extent that quantization of the conductance can also be observed at fairly high temperatures.

Using equation (12), we get the thermopower of the quantum contact S in the form

S = Smon + Sosc. (26)
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Here

Smon = k2
Bπ2

3e

T

µ − V0
(27)

and

Sosc = k2
Bπ2

3e

4π3T 2ω2

(µ − V0)h̄ω2
1

∞∑
k=1

(−1)k k cos[2πn(µ − V0)/h̄ω1]

sinh(2π2kT/h̄ω1) sinh(πkω2/ω1)
. (28)

It follows from equations (26)–(28) that the behaviour of the thermopower of the quantum
contact as a function of the chemical potential and temperature is analogous to the behaviour
of the thermopower of the quantum channel. The dependence of the thermopower on the
magnetic field is more difficult in this case and is conditioned by the relationship between
magnetic and size quantization.

5. Conclusions

We have studied the conductance and the thermopower of a 2D parabolic quantum channel
and quantum point contact placed in a magnetic field. We have shown that the thermopower
of the channels and contacts undergoes oscillations as a function of chemical potential and of
magnetic field. The amplitudes and periods of the oscillation have been found. It is shown
that the amplitude of the oscillations is temperature independent at very low temperatures and
linearly temperature dependent at higher temperatures. In the case of strong size quantization
the thermopower of the quantum channel is a monotonic function of the magnetic field. It is
shown that in the case of quantum point contact the value h̄ω2/2π plays exactly the same role
as the temperature.
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